

Body-matched Slot Antennas for RadioFrequency Identification

Cecilia Occhiuzzi¹, Claudio Calabrese¹ and Gaetano Marrocco¹

¹ University of Roma Tor Vergata, Via del Politecnico, 1, 00133 Roma, Italy, marrocco@disp.uniroma2.it

Abstract

This paper addresses the design of transponder antennas for Mobile Healthcare Networks based on the RFID technology involving the human body as the object to be tagged or bio-monitored. A new planar tag family based on a suspended patch fed via a shaped nested slot, and able to host sensors and electronics, is here introduced. Three different layouts have been investigated through numerical simulations and fabricated prototypes. The achieved results are promising toward the possible application of such antennas for the bio-monitoring inside hospital or domestic rooms.

1. Introduction

Radio Frequency IDentification (RFID) of objects and remote control of devices has become very popular in logistics, inventory management and bio-engineering applications. Various kinds of data can be contactless transferred to a local querying system (reader) from a remote transponder (tag) including the antenna and a microchip transmitter. A new frontier is the wireless monitoring of people within Mobile Healthcare Services [1] with the purpose to reduce the hospitalization of patients, to support disaster relief or to get an epidemic under control. An RFID system could provide real-time bio-monitoring and localization of patients inside hospitals or domestic environments, as well as in extreme conditions like a Space Capsule. In these cases the tag should be placed on the human body and equipped with bio-sensors (temperature, blood pressure, glucose content) and, when activated by the reader, tag ID and bio-signals could be transferred to a remote units and then stored and processed (Fig. 1).

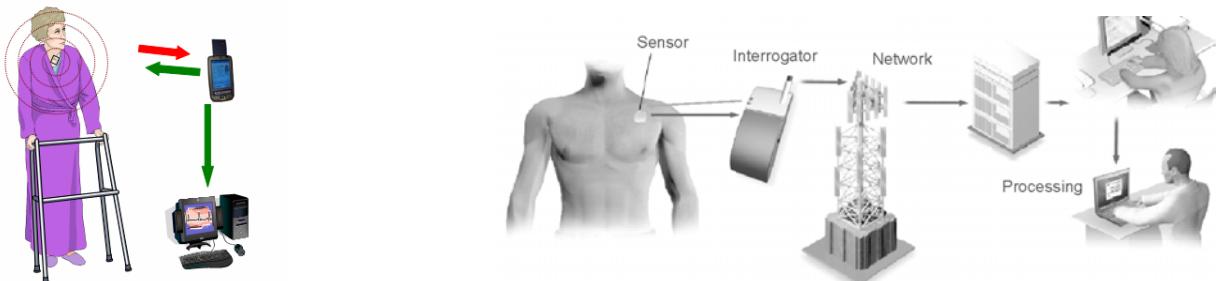


Fig. 1. Typical scenarios for a Mobile Healthcare Network.

These devices could be *passive*, harvesting energy from the interrogating system, *semi-active* when a battery is included only to feed the sensors, or fully *active* where a local source directly feeds a microcontroller as well as the transmitting radio. However, the large battery packs required for active techniques, in addition to the use of protruding antennas, are suboptimal for medical use and additional issues have to be considered, such as the compromise between a long battery-life and a miniaturized design. Moreover, when active tags are attached onto the human body, or implanted, the resultant RF power deposition inside tissue must be compliant with safety regulation.

Focusing on passive or semi-active systems, many RFID tag antennas, for on-body application or implants, conventionally work in the HF band (13.56 MHz) or below. These devices are typically fabricated as multi-turn coils, just in the case of wristbands or insulated capsules. At this frequency the antenna performs well around liquids and human tissues but the activation range is generally smaller than 1m due to the fast attenuation of the magnetic field with the distance. On the other hand, UHF devices (860-960MHz), although more influenced by high dielectric targets, may in principle promise larger activation ranges.

Together with the microchip sensitivity, the tag antenna plays a key role in the RFID system performance, such as the reading range and compatibility with the tagged object. In the case of RFID with sensing capability, the antenna should be additionally suited to electrical and physical integration with sensing electronics.

Conventional general-purpose tags are designed in free space, but when on-body applications are required, the strong pattern distortion and the efficiency loss, caused by human body dissipation and scattering, need to be taken into account in the first stage of the design. Although considerable publications are available about on-body antennas used for microwave heating as well as for radiometric and radar sensors and for implanted devices, the design of UHF RFID antennas for on-body applications is not a common topic since it involves conjugate impedance matching to microchip transmitters having high capacitive input reactance.

This contribution considers the design of planar slot antennas placed onto the human body working in the UHF RFID band. In particular, it is of interest to investigate on the possibility to design *passive* or *semi-passive* tags, e.g. such to be directly activated by the reader radiation itself, within the existing technological and energetic constraints and to find a well suited antenna layout. The research focuses on tags to apply on the thorax and on the legs, eventually combined with sensors and electronics.

2. Technological and energetic constraints

Having fixed the effective power ($EIRP_R$) transmitted by the reader, the tag antenna gain (G_{tag}) and the sensitivity (P_{chip}) of the tag microchip, e.g. the RF power required to the microchip electronics to turn on and complete its tasks, the maximum activation distance of the tag along the (θ, ϕ) direction is therefore given [2] by

$$d_{max}(\theta, \phi) = \frac{c}{4\pi f} \sqrt{\frac{EIRP_R}{P_{chip}} \tau G_{tag}(\theta, \phi)}, \quad \tau = \frac{4R_{chip}R_A}{|Z_{chip} + Z_A|^2} \leq 1 \quad (1)$$

where P_{chip} is the microchip's sensitivity, G_{tag} the gain of the tag's antenna and τ is the power transmission coefficient [3] which accounts for the impedance mismatch between antenna ($Z_A = R_A + jZ_A$) and microchip ($Z_{chip} = R_{chip} + jZ_{chip}$). Since the microchip includes an energy storage stage, its input impedance is strongly capacitive, and therefore the antenna should be designed with inductive reactance in order to achieve a conjugate matching. Beyond d_{max} the power collected by the tag decreases under the microchip sensibility and the tag is unreachable.

The presence of the human body, with its high permittivity and conductivity, will favour the antenna miniaturization but nevertheless will induce a strong power absorption. The antenna gain, and hence the link distance, will be sensibly reduced with respect to the free space. The maximum transmitted power allowed to the reader is constrained to local regulations. In Europe the relevant standards for UHF RFID applications are the ETSI EN330-220 and Draft TESI EN302 208-2. In particular within the 865.6-867.6MHz the maximum EIRP is 3.2W, which overcomes the previous limit 0.8W. In the U.S.A. the FCC allowed band is 902-928MHz with maximum transmitted EIRP=4W.

Microchip power activation threshold is continuously improving, reducing from 1mW in the year 2001 to some microwatts in today current products or even less in the state of the art ASICS [4].

From equation (1), antennas with averaged realized gain ($G_{tag}\tau$) not less than -10dB could be in principle compatible with reading distances of the order of 5m if the microchip sensitivity is less than 10 μ W.

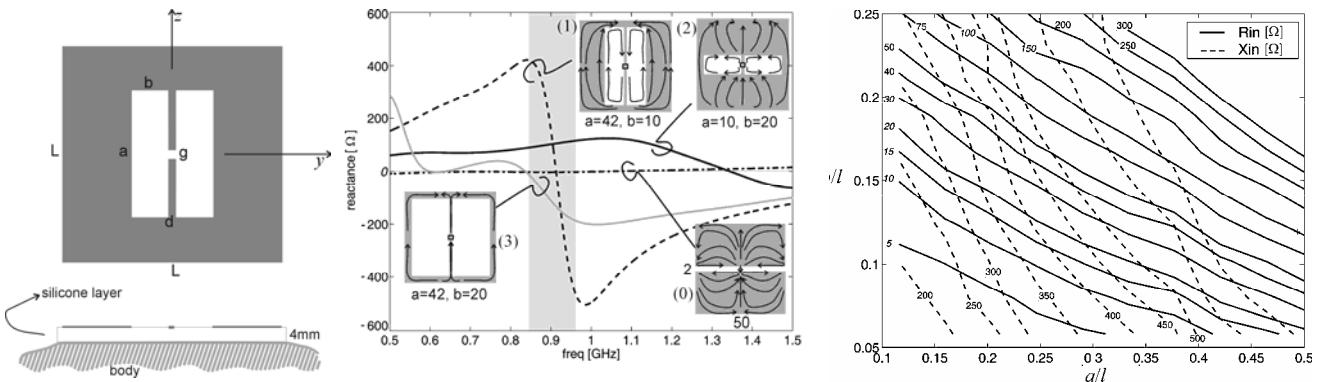


Fig. 2. *left*) Parameters of the proposed planar slot antennas. The microchip transmitter should be placed in the central gap of size $g \times g$. *middle*) Typical antenna input impedance for some choice of the H-slot parameters (in mm). In all the case the patch size is $L=50\text{mm}$. *right*) matching chart to design the H shape factor to match the particular microchip's impedance.

3. The Nested-Slot Suspended Patch (NSSP) Antenna

The tag antenna family here described, is a nested-slot suspended-patch (NSSP). Small size slot antennas are naturally inductive and therefore appear more suited than dipoles to achieve conjugate impedance matching [5]. The basic geometry is visible in Fig.2. Since the slot sizes are comparable with the patch surface, the radiation features are related to both the objects. In particular, the maximum antenna gain is mainly fixed by the patch side L , while the impedance tuning can be changed by acting on the slot size a and b . Depending on the shape of the internal slot, the antenna mainly radiates either as a *dumbbell H*-slot or as a pair of rectangular loops sharing the sourced conductor.

All the presented results are calculated by a Finite-Difference Time-Domain solver, having considered the antenna placed onto stratified elliptical-based cylinder simulating the tagged body district. The computer simulations (Fig.3) and also the early measurements on fabricated prototypes, have demonstrated a relevant impedance tuning agility and a read distance suited to small or even average room.

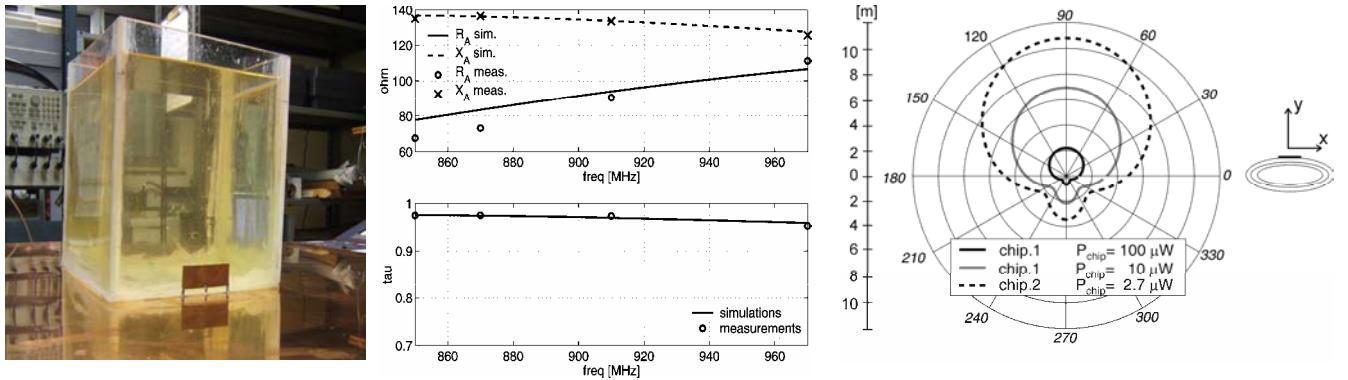


Fig.3: *left*) Fabricated Half-plane NSSP antenna in front of a Perspex cubic phantom filled with tissue-equivalent solution made of deionised water, saccharose and sodium chloride. The antenna and the box are placed over a 1m x 1m copper image plane. *middle*) Measured and computer-estimated input impedance. *right*) Estimated read distance for different kind of microchip and 3.2 W EIRP emitted power.

4. The Meandered Slot Antenna (MSA)

The previously considered NSSP antennas are symmetric with respect to both the x and z axis. However this geometry offers additional degrees of freedom in the position of the slot and in the connection to the microchip provided that a larger number of slot discontinuities (Fig.4) are considered. This new layout similar to a meandered slot, when properly optimized, could permit to fulfill several electrical and geometrical constraints, such as the impedance matching to a particular microchip, dual-frequency operations, the embedding of a sensor stage of given size, and a stable response over a large variety of tagged dielectrics. The slot profile can be seen as a slot-line impedance transformer [6], where each discontinuity (tooth) provides energy storage and radiation. A Genetic Algorithm optimization problem is hence formulated to shape the transformer layout, within input impedance and size requirements. As an example, Fig.4 shows the shape and the power transmission coefficient τ for some 870MHz slot-line antennas optimized to occupy only a fraction of the overall metallization, and preliminary experimental prototypes on FR4.

5. The Slot Inverted L antenna (SILA)

A further evolution of the slot-driven patch comprises an L-type patch folding (Fig.5) with the purpose to increase the antenna radiation and in particular to reduce the power dissipation into the body district where the tag is placed. The folded region acts as a ground plane which partly isolates the antenna from the body. The radiation is now due to the H-slot itself, as in the previous layouts, but also to the current discontinuity in the folding and especially to the patch truncation. When attached onto a leg-like layered cylinder, this layout produces a larger gain than the NSSP, with maximum value of the order of 0dB (it was -6÷-8dB in the case of the NSA) with back radiation ranging within -5÷-10dB. The read distance results sensibly improved. This antenna is intended for the monitoring of legs' movement in neuroscience applications.

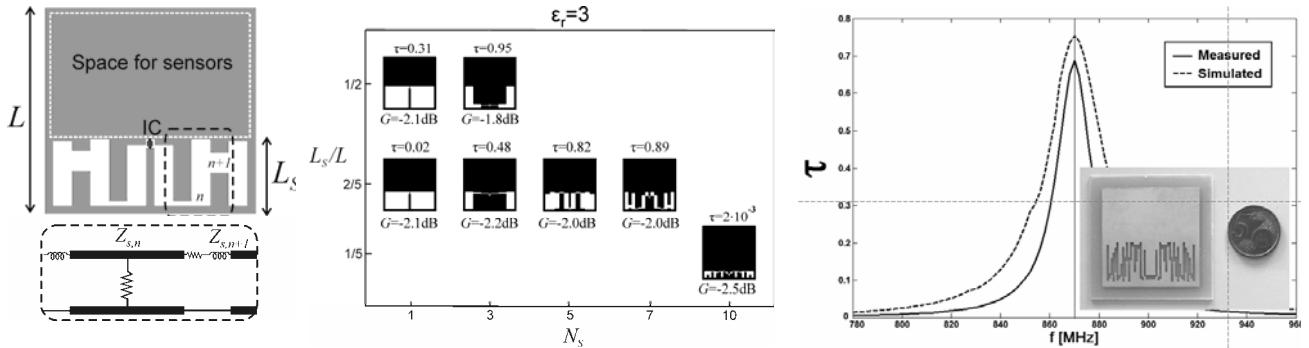


Fig.4: *left*) Layout of the meandered slot family and slot-line model. *middle*) Examples of antennas with $L=5\text{cm}$, placed over a $\epsilon_r=3$ dielectric half-space, which have been optimized for an IC with $Z_{IC}=15-j450\Omega$, for different sizes L_s of the antenna region and for different number N_s of slot-line sections. It is assumed a symmetric layout and therefore N_s represents half the overall slot transitions. G is the maximum gain in the air half-space. *Right*) Fabricated $5\text{cm} \times 5\text{cm}$ prototype and in-air measurement of the power transmission coefficient.

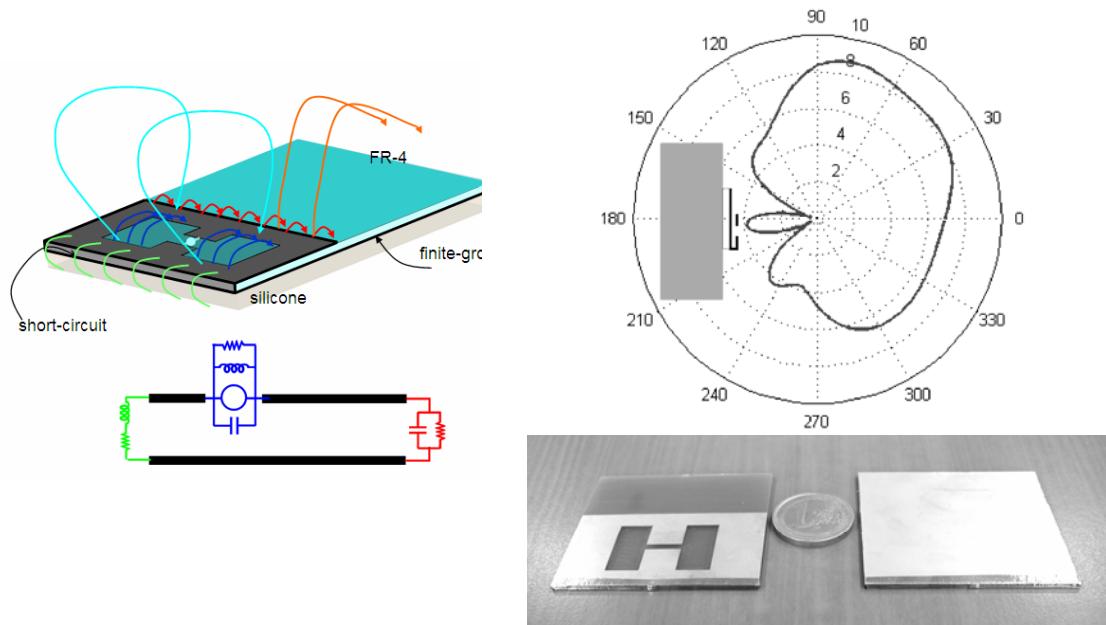


Fig.5: *left*) Layout of inverted slot antenna and its transmission line equivalent. *Right*) estimated read distance for reader power 3.2 EIRP and microchip sensitivity $P_{chip}=10\text{mW}$.

6 References

- [1] Healthcare : L. Cheng-Ju, L. Li, C. Shi-Zong, W. Chi Chen, H. Chun-Huang, C. Xin-Mei, "Mobile healthcare service system using RFID", *IEEE Int. Conf. Networking Sensing and Control 2004*, Vol.2 pp.1014-1019, 2004
- [2] K. Finkenzeller, *RFID Handbook*, Wiley & Son, New York, 2000
- [3] P. V. Nikitin, K. V. S. Rao, S. F. Lam, V. Pillai, R. Martinez, H. Heinrich, "Power reflection coefficient analysis for complex impedances in RFID Tag design", *IEEE Trans. Microwave, Theory, Tech.*, Vol.53, N.9, pp.2721-2715, Sept. 2005
- [4] J. Curty, N. Joehl, C. Dehollain, M. J. Delercq, "Remotely powered addressable UHF RFID integrated system", *IEEE J. Solid-State Circuits*, Vol.40, N.11, pp. 2193-2202, Nov. 2005
- [5] G. Marrocco, "Rfid antennas for the UHF remote monitoring of Human subjects", *IEEE Transaction on. Antennas and Propagation*, N.55, N. 6, pp. 1862-1870, June 2007
- [6] C. Calabrese, G. Marrocco, "Meandered-Slot Antennas for Sensor-RFID Tags", to appear on *IEEE Antennas and Wireless Propagation Letters*, 2008.

射 频 和 天 线 设 计 培 训 课 程 推 荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养；我们于 2006 年整合合并微波 EDA 网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：<http://www.edatop.com/peixun/rfe/129.html>


射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址：<http://www.edatop.com/peixun/rfe/110.html>

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程，共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解，并多结合设计实例，由浅入深、详细而又全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用 ADS，迅速提升个人技术能力，把 ADS 真正应用到实际研发工作中去，成为 ADS 设计专家…

课程网址：<http://www.edatop.com/peixun/ads/13.html>

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程，是迄今国内最全面、最专业的 HFSS 培训教程套装，可以帮助您从零开始，全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装，更可超值赠送 3 个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的 HFSS 学习更加轻松顺畅…

课程网址：<http://www.edatop.com/peixun/hfss/11.html>

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面、系统、专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…

课程网址: <http://www.edatop.com/peixun/cst/24.html>

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难…

课程网址: <http://www.edatop.com/peixun/hfss/122.html>

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

详情浏览: <http://www.edatop.com/peixun/antenna/116.html>

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: <http://www.edatop.com>
- ※ 微波 EDA 网: <http://www.mweda.com>
- ※ 官方淘宝店: <http://shop36920890.taobao.com>